21 research outputs found

    Anagram: A Content Anomaly Detector Resistant to Mimicry Attack

    Get PDF
    In this paper, we present Anagram, a content anomaly detector that models a mixture of high-order n-grams (n > 1) designed to detect anomalous and suspicious network packet payloads. By using higher- order n-grams, Anagram can detect significant anomalous byte sequences and generate robust signatures of validated malicious packet content. The Anagram content models are implemented using highly efficient Bloom filters, reducing space requirements and enabling privacy-preserving cross-site correlation. The sensor models the distinct content flow of a network or host using a semi- supervised training regimen. Previously known exploits, extracted from the signatures of an IDS, are likewise modeled in a Bloom filter and are used during training as well as detection time. We demonstrate that Anagram can identify anomalous traffic with high accuracy and low false positive rates. Anagram’s high-order n-gram analysis technique is also resilient against simple mimicry attacks that blend exploits with normal appearing byte padding, such as the blended polymorphic attack recently demonstrated in. We discuss randomized n-gram models, which further raises the bar and makes it more difficult for attackers to build precise packet structures to evade Anagram even if they know the distribution of the local site content flow. Finally, Anagram-’s speed and high detection rate makes it valuable not only as a standalone sensor, but also as a network anomaly flow classifier in an instrumented fault-tolerant host-based environment; this enables significant cost amortization and the possibility of a symbiotic feedback loop that can improve accuracy and reduce false positive rates over time

    Intrusion and Anomaly Detection Model Exchange for Mobile Ad-Hoc Networks

    Get PDF
    Mobile Ad-hoc NETworks (MANETs) pose unique security requirements and challenges due to their reliance on open, peer-to-peer models that often don't require authentication between nodes. Additionally, the limited processing power and battery life of the devices used in a MANET also prevent the adoption of heavy-duty cryptographic techniques. While traditional misuse-based Intrusion Detection Systems (IDSes) may work in a MANET, watching for packet dropouts or unknown outsiders is difficult as both occur frequently in both malicious and non-malicious traffic. Anomaly detection approaches hold out more promise, as they utilize learning techniques to adapt to the wireless environment and flag malicious data. The anomaly detection model can also create device behavior profiles, which peers can utilize to help determine its trustworthiness. However, computing the anomaly model itself is a time-consuming and processor-heavy task. To avoid this, we propose the use of model exchange as a device moves between different networks as a means to minimize computation and traffic utilization. Any node should be able to obtain peers' model(s) and evaluate it against its own model of "normal" behavior. We present this model, discuss scenarios in which it may be used, and provide preliminary results and a framework for future implementation

    A Holistic Approach to Service Survivability

    Get PDF
    We present SABER (Survivability Architecture: Block, Evade, React), a proposed survivability architecture that blocks, evades and reacts to a variety of attacks by using several security and survivability mechanisms in an automated and coordinated fashion. Contrary to the ad hoc manner in which contemporary survivable systems are built--using isolated, independent security mechanisms such as firewalls, intrusion detection systems and software sandboxes--SABER integrates several different technologies in an attempt to provide a unified framework for responding to the wide range of attacks malicious insiders and outsiders can launch. This coordinated multi-layer approach will be capable of defending against attacks targeted at various levels of the network stack, such as congestion-based DoS attacks, software-based DoS or code-injection attacks, and others. Our fundamental insight is that while multiple lines of defense are useful, most conventional, uncoordinated approaches fail to exploit the full range of available responses to incidents. By coordinating the response, the ability to survive even in the face of successful security breaches increases substantially. We discuss the key components of SABER, how they will be integrated together, and how we can leverage on the promising results of the individual components to improve survivability in a variety of coordinated attack scenarios. SABER is currently in the prototyping stages, with several interesting open research topics

    Privacy-preserving payload-based correlation for accurate malicious traffic detection

    No full text
    With the increased use of botnets and other techniques to obfuscate attackers' command-and-control centers, Distributed Intrusion Detection Systems (DIDS) that focus on attack source IP addresses or other header information can only portray a limited view of distributed scans and attacks. Packet payload sharing techniques hold far more promise, as they can convey exploit vectors and/or malcode used upon successful exploit of a target system, irrespective of obfuscated source addresses. However, payload sharing has had minimal success due to regulatory or business-based privacy concerns of transmitting raw or even sanitized payloads. The currently accepted form of content exchange has been limited to the exchange of known-suspicious content, e.g., packets captured by honeypots; however, signature generation assumes that each site receives enough traffic in order to correlate a meaningful set of payloads from which common content can be derived, and places fundamental and computationally stressful requirements on signature generators that may miss particularly stealthy or carefully-crafted polymorphic malcode. Instead, we propose a new approach to enable the sharing of suspicious payloads via privacy-preserving technologies. We detail the work we have done with two example payload anomaly detectors, PAYL and Anagram, to support generalized payload correlation and signature generation without releasing identifiable payload data and without relying on single-site signature generation. We present preliminary results of our approaches and suggest how such deployments may practically be used for not only cross-site, but also cross-domain alert sharing and its implications for profiling threats

    Privacy-Preserving Distributed Event Corroboration

    Get PDF
    Event correlation is a widely-used data processing methodology for a broad variety of applications, and is especially useful in the context of distributed monitoring for software faults and vulnerabilities. However, most existing solutions have typically been focused on “intraorganizational” correlation; organizations typically employ privacy policies that prohibit the exchange of information outside of the organization. At the same time, the promise of “interorganizational” correlation is significant given the broad availability of Internet-scale communications, and its potential role in both software maintenance and software vulnerability exploits. In this proposal, I present a framework for reconciling these opposing forces in event correlation via the use of privacy preservation integrated into the event processing framework. By integrating flexible privacy policies, we enable the correlation of organizations ’ data without actually releasing sensitive information. The framework supports both source anonymity and data privacy, yet allows for the time-based correlation of a broad variety of data. The framework is designed as a lightweight collection of components to enable integration with existing COTS platforms and distributed systems. I also present two different implementations of this framework

    Towards Collaborative Security and P2P Intrusion Detection

    Get PDF
    The increasing array of Internet-scale threats is a pressing problem for every organization that utilizes the network. Organizations have limited resources to detect and respond to these threats. The end-to-end (E2E) sharing of information related to probes and attacks is a facet of an emerging trend toward "collaborative security." The key benefit of a collaborative approach to intrusion detection is a better view of global network attack activity. Augmenting the information obtained at a single site with information gathered from across the network can provide a more precise model of an attacker's behavior and intent. While many organizations see value in adopting such a collaborative approach, some challenges must be addressed before intrusion detection can be performed on an inter-organizational scale. We report on our..
    corecore